
Grace A New Educational

Object-O!ented Programming

Langua"

James Noble

Andrew Black

Kim Bruce

1

gracelang.org

Target Users

First year students in OO CS1 or CS2
objects early or late,

static or dynamic typing,

functionals first or scripting first or …

Second year students

Faculty & TAs — assignments and libraries

2

High Level Goal

Integrate proven newer ideas in programming
languages into a simple language for teaching

with features that cleanly represent key concepts

so that students can focus on the essential, rather
than accidental, complexities of programming and
modelling.

3

Low overhead for simple programs

Simple semantic model that encourages thinking
about the program

Optional and gradual typing, including solid generics

Power of functional constructs

Support for immutables

High level constructs for concurrency/parallelism

Assertions, traces and tools for finding
contradictions

4

Design Principles

Warning!

Design is ongoing
You can still influence the design!

Ambitious goals

Still disagree on details

We’re not looking for innovative features, but
for innovative combination of features to
help novices learn to program.

5

Grace Fundamentals

Everything is an object

Simple method dispatch

Single inheritance

Types are interfaces (classes ! types)
Blocks are first-class closures

Extensible via Libraries (control & data)

6

Grace Fundamentals

Language should be familiar

Java / C / Python / Eiffel / Scala programmers
should be able to read Grace programs and
recognize concepts

Language levels for teaching

7

The inevitable

8

print “Hello World”

Prototype web-based compiler as well as
other implementations in progress

IDE’s critical for educational language
Intend to integrate with educational IDEs like
BlueJ, DrRacket

method average(in : InputStream) -> Number
//"reads numbers from in stream and averages them
{" var total := 0
" var count := 0
" while { ! in.atEnd } do {
 " count := count + 1
 " total := total + in.readNumber }
 if (count = 0) then {return 0}
" return total / count }

Grace Example

9

Any questions?

Numbers

Numbers are either

rational (exact) or

irrational (approximate)

(10/3) * 6 = 20

All numeric literals denote rational numbers

One true “method request”
Like Smalltalk and Self:

no overloading

"method request" names the method and
provides the arguments

"dynamic dispatch" selects the correspondingly-
named method in the receiver

"method execution" occurs in the receiver

11

(We’re trying to learn not to say "message-send" or
"method call".)

Method Requests

12

aPerson.printOn(outputStream)

printOn(outputStream) // implicit self

((x + y) > z) && !q " " // operators are methods

while { ! in.atEnd } do { print (in.readNumber) }

 " " " " " " " " " " // multi-part method name

λ-expressions

“Lambdas are relegated to relative obscurity
until Java makes them popular by not having
them.” James Iry

Grace has λs. We call them blocks:

for (1..10) do "// multi-part method name
" { i : Number -> print(i) }

Blocks
Blocks are represented as objects

resulting object has an apply method

like Smalltalk, but with {->} and apply

14

object { method apply(a, b) {
" " " " #a.name $ b.name } }

def orderingFunction = { a, b -> a.name $ b.name }

if orderingFunction.apply(x, y) then { … }

def Grace = object {
 // outermost enclosing object
 // methods requested on implicit self
 method if (c) then (t : Block) else (f : Block) {
 c.ifTrue (t) else (f) }

 method while (c : Block) do (a : Block) {
 c.apply.ifTrue({ a.apply; while (c) do (a) })
" …
}

15

Libraries can define control

16

object {
 def x : Number = 2
 def y : Number = 3
 method distanceTo(other : APoint) -> Number {
 ((x - other.x)^2 + (y - other.y)^2) }
}

x 2
y 3

distanceTo(Point) ...

Object constructors

17

new(x,y)

class Point { x’: Number, y’: Number ->
 def x : Number = x’
 def y : Number = y’
 method distanceTo(other : APoint) -> Number {
 ((x - other.x)^2 + (y - other.y)^2) }
}

x 2
y 3

distanceTo(Point) ...

x 2
y 3

distanceTo(Point) ...

x 2
y 3

distanceTo(Point) ...

x 2
y 3

distanceTo(Point) ...

Classes Classes

18

def PointFactory = object {
 method new (x’: Number, y’ : Number) -> {
" " " return object {
 def x : Number = x’
 def y : Number = y’
 method distanceTo(other:APoint)->Number {
 " " " " ((x - other.x)^2 + (y - other.y)^2) }
 }
 }
}

Class: Summary

19

class Point { x’, y’ ->
 def x = x’
 def y = y’
 method distanceTo other -> {
 ((x - other.x)^2 + (y - other.y)^2) }
 }

23

def Point = object {
 "" method new (x’, y’) -> {
" " " return object {
" " " " def x = x’
 "" " " def y = y’
 "" " " method distanceTo(other) -> {
 "" " " ((x - other.x)^2 + (y - other.y)^2) }}}
}

Classes are not for Classificaiton

Classes are an implementation concept

Inheritance via object extension

Classes are not types

Clases don’t even play at being types on TV

20

Types
Types are for classification

- Structural, Gradual, Optional

type Point = {
! x -> Number
! y -> Number
! distanceTo (other:Point) -> Number
}

Types are sets of method request signatures
Reified Generics

21

No null pointer exceptions!

22

Type Operations
Algebraic constructors:

T1 & T2: union of methods in T1 and T2

T3 + T4: intersection of methods in T3 and T4

T5 - T6: every method in T5 but not in T6

Variants: Point | nil, ?Point, Leaf<X> | Node<X>

x : (A | B) ≡ x : A ∨ x : B

Generics — no variance annotations needed!

23

Match / Case

24

match (x) // x : 0 | String | Student

 // match against a literal constant or singleton object
 case { 0 -> print(”Zero”) }

 // typematch, binding a variable
 case { s : String -> print(s) }

 // destructuring match, binding variables ...
 case { _ : Student(name, id) -> print (name) }

Object Nesting
Object Nesting (gBeta, Newspeak)

nesting defines a dialect:
object has access to surrounding definitions

program written in multiple dialects

typed libraries written by instructors

untyped code written by students

Language levels remove features for teaching

25

Asynchrony & Parallelism
Hypothesis: we don’t know what to do about
parallelism!

Conclusion: we must support different “models”

Software Transactional Memory (Clojure)

Actors (Scala, Akka, Erlang)

Locks (Java)

Atomic Sets

...
26

Why Consider Using Grace?

Clean Syntax

Simple uniform model
no static features, no overloading, no null, etc.

Everything is an object (even lamdbas)

Modern features
Generics done right, closures, pattern matching

Syntax supporting design of own control structures

27

Why Consider Using Grace?

Easy transition between dynamic & static
type-checking

High level support for parallelism and
concurrency (planned)

Likely adopt concurrency constructs similar to
those in Habanero Java at Rice:

async{stmts}, finish {stmts}, future f := async{...},
forall(...) {stmts}, isolated{stmts}

Support for immutable objects

28

Schedule
2011: 0.1, 0.2 and 0.5 language releases, hopefully
prototype implementations

3 implementations in progress

2012 0.8 language spec, mostly complete
implementations

2013 0.9 language spec, reference implementation,
experimental classroom use

2014 1.0 language spec, robust implementations,
textbooks, initial adopters for CS1/CS2

2015 ready for general adoption?
29

Help!

Supporters

Programmers

Implementers

Library Writers

IDE Developers!!!!

Testers

Teachers

Students

Tech Writers

Textbook Authors

Blog editors

Community Builders

30

http://gracelang.org

