And now for something
completely different ...

> @B

PY{S

M“ 254 #gty L S Py T

Today, you have been hearing about all sorts of clever
new languages, language features, and uses of
language features ...

And now for something
Al completely different ...

U

B A 4 G r# A i s L (il PRI . Py e T

Now, we are going to tell you about a boring language
with no new language features, or uses of language
features ...

A New EMM

g;;>2Z£%2c¢gfcmam%%7%W@7
e

e gty =" L S e PR

Andrew Black

Kim Bruce

James Noble

Suppose:

@ You are going to teach object-oriented
programming tfo lst year students.

@ What language would you choose?

Which language?

@ ECOOP 2010: we don't like the available options

@ "Professional” languages too complex for
teaching (Scala, C#, Java ...)

@ Smalltalk doesn't support static typing;
Python has inconsistent method syntax, no
encapsulation

@ Group decision: design a modern object-oriented
language specifically for fteaching

5

Objectives

@ Low overhead for simple programs
@ Good IDE support for novices

@ Simple semantic model

@ Support a variety of approaches to teaching
@ Objects-first and objects-late
@ Untyped, Typeful and Gradually-typed

@ Easy transition to other languages

7

High Level Goal

@ "A Haskell for 00"

@ Integrate proven newer ideas in
programming languages into a simple
language for teaching

@ language features represent key concepts
cleanly

@ allow students to focus on the essential, rather
than accidental, complexities of programming
and modelling.

Best of 20th Century-Technology

@ Closures

@ Assertions, unit testing, traces, and tools for
finding errors

@ High level constructs for concurrency
@ Support for immutable data

@ Generics (done right)

Influences

@ Static world:
@ Eiffel, Java, CH#, Scala, ...
@ Dynamic world:

@ Smalltalk, Python, Scheme/Racket, ...

Simple methods

@ Methods can also be defined and used at the “top
level”:

method celsiusToFahrenheit (temp) {
((temp * 9) / 5) + 32
}

print "20° Celsius is {celsiusToFahrenheit 20}° Fahrenheit"

Simplest Programs

@ Hello, World!
print "Hello, World"

@ "Top level” code is considered to be inside
the “default object”

object §
print “Hello, World"
}

@ An object with O methods and 1 statement

Object can contain code that is executed when created

10

Types are optional

@ The same code with type annotations:

method celsiusToFahrenheit (temp: Number) -> Number {
((temp * 9) / 5) + 32
}

print "20° Celsius is {celsiusToFahrenheit 20}° Fahrenheit"

» Programmer decides whether typing is static,
dynamic or ...

» All options are type-safe

Clean Concepts

@ numbers

23 2x10111 1.75 1.414214 -1 (all exact)
@ methods on numbers

20 + 43 7/4 20.factorial (all exact)

2.sqrt m (approximate)

@ constant binding
def cost = quantity * unitPrice

def disk = object
def radius = 5
method area { (radius”2)*m }

}

@ Objects

object {
method radius § 5 }
method area { (radius”2)*m }

}

@ constants in objects are accessed as methods

disk.radius
disk.area

@ So, it doesn't matter if we define

def disk = object {
def radius = 5
method area { (radius”2)*m }}

or

def disk' = object §
method radius { 5 }
method area { (radius”2)*m }}

@ variable binding
var sum := O
var speed := 2
var invoiceDate := aDate.today

@ methods and blocks can have temporary
variables

@ objects can have instance variables

@ object factories:

def aDisk = object §
method ofRadius(r) §

object §
method radius §{ r }
method area { (radius”2)*m }
method > (other) §

radius > other.radius }
}

}
}

def myDisk = aDisk.ofRadius(7)

def yourDisk = aDisk.ofRadius(8)

19

@ Instance variables

def adjustableDisk = object {
var radius := 5
method area { (radius”2)*m }}

@ Instance variables bindings can be changed
using methods (unless they are confidential):

adjustableDisk.radius := 1

\

the method is named
“radius:="

@ Classes codify factories:

class aDisk.ofRadius(r) {
method radius § r }
method area { (radius”2)*m }
method > (other) §
radius > other.radius }
}

def myDisk = aDisk.ofRadius(7)

def yourDisk = aDisk.ofRadius(8)

@ Object composition:

object §
def hole = aDisk.ofRadius (h/2)
def outside = aDisk.ofRadius (d/2)
method area { outside.area - hole.area }

}

class aWasher.holeDiameter (h) outerDiameter (d) §
def hole = aDisk.ofRadius (h/2)
def outside = aDisk.ofRadius (d/2)
method area { outside.area - hole.area }

}

Grace supports multipart method names (“mixfix“)
21

@ Returning multiple results

Grace does not support multiple results. But
its easy to return an object:

method split (filename) {
def dot = filename.indexOf(".")
object §
def base = filename.upto (dot-1)
def extension = filename.from (dot+1)

Grace answers an object with 2 methods
23

@ Object inheritance:

def cylinder = object {
inherits aDisk.ofRadius (r)
def height = h
method volume { area * height }

}

class aCylinder.baseRadius (r) height (h) {
inherits aDisk.ofRadius (r)
def height = h
method volume { area * height }

Closures

@ With or without parameters:
@ { print "hello" }

o { x,y -> print ("adding " ++ x ++ " t0 " ++ Yy ++
" gives " ++ (x+y))}

@ represented by objects with “apply” method
@ object { method apply(x,y) { print ... }}

@ Real lexical scope

Building Control
Structures

@ Closures support definition of control
constructs in libraries:

@ class List §
method forEach (actionClosure) {..}
!

@ myList.forEach {x -> ..}

Other Grace Features

@ Types (= interfaces) # classes
@ Visibility: public & confidential
@ Support for immutable objects

@ Equals & hashcode built-in (like Eclipse)

@ Number consists of Rationals & Binaryé4 floats

Delayed Evaluation
Visible

if (someCond) then { C } else { D }
while §{ someCond } do { C }

if (someCond) then { C } else §
{if (otherCond) { D } else { E }}

Typing Disciplines

@ Experimentalist (flower child):

@ Dynamic typing: Do what you want — we'll make
sure its safe at run-time ...

@ TRC regulated:

o Static typing: We'll make sure everything is safe
before we let you do it.

@ But semantics of type-safe programs are
same either way.

@ .. though some may not be allowed by TRC.

All Disciplines Interoperate

@ Mixing disciplines helps students/
programmers migrate from dynamically to
statically typed languages.

@ What does a type annotation mean in a
dynamically typed language?
@ Represents a claim - generates a dynamic check
o like “assert s.nonempty”

® What does a type annotation mean in a
statically typed language?

@ Represents provably correct assertion

Pattern Matching

method matchTest (x: Number) §
match(x)
case {1 -> “one"}
case {2 -> "two"}
case {_ ->“lots"}

Advanced Features

Variant Types

@ Object types dont contain null value

@ Avoid Hoare’s “billion dollar mistake”

@ Construct as needed from singleton and
variant types:

o def notThere = object { method asString {..}..}

o type Result = String | notThere

Using a variant

method doSomething(key: KeyType) {
match(tablevalueOf(key))
case {v:String ->
out.printin(... ++ v)
lastValue := v
case {notThere ->
out.printin(... ++ " is empty")

}

Provide more powerful pattern matching?

Why Consider Using Grace?

@ Clean Syntax

@ Simple uniform semantic model
@ no static features, no overloading, no null, etc.

@ Everything is an object (even lambdas)

@ Modern features
@ Generics done right, closures, case/pattern matching

@ Syntax supporting design of control structures

Language Levels

@ Accomplished via libraries
@ Libraries package together classes and
objects

o “use” object or class = inherit public features

@ Need fo develop useful pedagogical IDEs

Why Consider Using Grace?

@ Easy transition between dynamic & static
type-checking

@ High level support for parallelism and
concurrency (planned)
@ Likely adopt concurrency constructs similar to
those in Habanero Java at Rice:

@ async{stmts}, finish {stmts}, futures f := async{...},
forall(...) {stmts}, isolated{stmts}

@ Support for immutable objects

Current State of Grace

2011: 0.1, 0.2 and 0.3 language releases, prototype
implementations v/

@ 3 implementations in progress, spec at 0.35

2012: 0.8 language spec, mostly complete
implementations

2013: 0.9 language spec, reference implementation,
experimental classroom use

2014: 1.0 language spec, robust implementations,
textbooks, initial adopters for CS1/CS2

2015: ready for general adoption

@ Information, blog, discussion:
http://www.gracelang.org
@Try Grace in your browser:

http://
homepages.ecsvuw.ac.nz/
~mwh/minigrace/ js/

@ Supporters

@ Programmers

@ Implementers

@ Library Writers
@ IDE Developers!!!!

@ Testers

@ Teachers

@ Students

@ Tech Writers

@ Textbook Authors
@ Blog editors

@ Community Builders

